Chapter 3

Linked Lists

In this chapter, we continue to study implementations of the List inter-
face, this time using pointer-based data structures rather than arrays. The
structures in this chapter are made up of nodes that contain the list items.
Using references (pointers), the nodes are linked together into a sequence.
We first study singly-linked lists, which can implement Stack and (FIFO)
Queue operations in constant time per operation and then move on to
doubly-linked lists, which can implement Deque operations in constant
time.

Linked lists have advantages and disadvantages when compared to
array-based implementations of the List interface. The primary disad-
vantage is that we lose the ability to access any element using get(i) or
set(i,x) in constant time. Instead, we have to walk through the list, one
element at a time, until we reach the ith element. The primary advantage
is that they are more dynamic: Given a reference to any list node u, we
can delete u or insert a node adjacent to u in constant time. This is true
no matter where u is in the list.

3.1 SlList: ASingly-Linked List

An SLList (singly-linked list) is a sequence of Nodes. Each node u stores
a data value u.x and a reference u.next to the next node in the sequence.
For the last node w in the sequence, w.next = null

63

§3.1 Linked Lists

head tail
2 [o[c|g=d[g=e]]
head tail add(x)
Lo [o[{c|g=d[e a=x]]
head tail remove()
ol g=fc[{d]g=le[{x]]
head tail pop()
Le[g=d [e a—=x]]
head tail push(y)

Llg—felg=tdfgle] =]

Figure 3.1: A sequence of Queue (add(x) and remove()) and Stack (push(x) and
pop()) operations on an SLList.

SLList

class Node {
T x;
Node next;

}

For efficiency, an SLList uses variables head and tail to keep track
of the first and last node in the sequence, as well as an integer n to keep
track of the length of the sequence:

SLList

Node head;
Node tail;
int n;

A sequence of Stack and Queue operations on an SLList is illustrated
in Figure 3.1.

An SLList can efficiently implement the Stack operations push() and
pop() by adding and removing elements at the head of the sequence. The
push() operation simply creates a new node u with data value x, sets
u.next to the old head of the list and makes u the new head of the list.
Finally, it increments n since the size of the SLList has increased by one:

64

SLList: A Singly-Linked List §3.1

SLList

T push(T x) {

Node u = new Node();

u.x = x;

u.next = head;

head = u;

if (n == 0)

tail = u;

n++;

return x;
}

The pop() operation, after checking that the SLList is not empty, re-
moves the head by setting head = head.next and decrementing n. A spe-
cial case occurs when the last element is being removed, in which case
tailissettonull:

SLList

T pop() {

if (n == 0) vreturn null;

T x = head.x;

head = head.next;

if (--n == 0) tail = null;

return x;
}

Clearly, both the push(x) and pop() operations run in O(1) time.

3.1.1 Queue Operations

An SLList can also implement the FIFO queue operations add(x) and
remove() in constant time. Removals are done from the head of the list,
and are identical to the pop() operation:

SLList

T remove() {
if (n == 0) return null;
T x = head.x;
head = head.next;

65

§3.1 Linked Lists

if (--n == 0) tail = null;
return x;

}

Additions, on the other hand, are done at the tail of the list. In most
cases, this is done by setting tail.next = u, where u is the newly created
node that contains x. However, a special case occurs when n = 0, in which
case tail = head = null. In this case, both tail and head are set to u.

SLList

boolean add(T x) {

Node u = new Node();

u.x = Xx;

if (n==20) {
head = u;

} else {
tail.next = u;

}

tail = u;

n++;

return true;

Clearly, both add(x) and remove() take constant time.

3.1.2 Summary

The following theorem summarizes the performance of an SLList:

Theorem 3.1. An SLList implements the Stack and (FIFO) Queue inter-
faces. The push(x), pop(), add(x) and remove() operations run in O(1) time
per operation.

An SLList nearly implements the full set of Deque operations. The
only missing operation is removing from the tail of an SLList. Removing
from the tail of an SLList is difficult because it requires updating the
value of tail so that it points to the node w that precedes tail in the
SLList; this is the node w such that w.next = tail. Unfortunately, the
only way to get to wis by traversing the SLList starting at head and taking
n— 2 steps.

66

DLList: A Doubly-Linked List §3.2

| @@@@

Figure 3.2: ADLList containing a,b,c,d,e.

3.2 DLList: A Doubly-Linked List

ADLList (doubly-linked list) is very similar to an SLList except that each
node u in a DLList has references to both the node u.next that follows it
and the node u.prev that precedes it.

DLList

class Node {
T x;
Node prev, next;

}

When implementing an SLList, we saw that there were always several
special cases to worry about. For example, removing the last element
from an SLList or adding an element to an empty SLList requires care
to ensure that head and tail are correctly updated. In a DLList, the
number of these special cases increases considerably. Perhaps the cleanest
way to take care of all these special cases in a DLList is to introduce a
dummy node. This is a node that does not contain any data, but acts as a
placeholder so that there are no special nodes; every node has both a next
and a prev, with dummy acting as the node that follows the last node in the
list and that precedes the first node in the list. In this way, the nodes of
the list are (doubly-)linked into a cycle, as illustrated in Figure 3.2.

DLList

int n;
Node dummy ;
DLList() {
dummy = new Node();

67

§3.2 Linked Lists

dummy.next = dummy;
dummy .prev = dummy;
n=20;

}

Finding the node with a particular index in a DLList is easy; we can
either start at the head of the list (dummy.next) and work forward, or start
at the tail of the list (dummy.prev) and work backward. This allows us to
reach the ith node in O(1 + min{i,n—i}) time:

DLList

Node getNode(int i) {
Node p = null;
if (i <n/ 2){
p = dummy.next;
for (int j = 0; j < i; j++)

p = p.next;
} else {
p = dummy;
for (int j =n; j > i; j--)
p = p.prev;

return (p);

}

The get(i) and set(i, x) operations are now also easy. We first find
the ith node and then get or set its x value:

DLList

T get(int i) {
return getNode(i).x;

—

T set(int i, T x) {
Node u = getNode(i);

Ty=u.x;
u.x = X;
return y;

The running time of these operations is dominated by the time it takes
to find the ith node, and is therefore O(1 + min{i,n—i}).

68

DLList: A Doubly-Linked List §3.2

Figure 3.3: Adding the node u before the node win a DLList.

3.2.1 Adding and Removing

If we have a reference to anode win a DLList and we want to insert a node
u before w, then this is just a matter of setting u.next =w, u.prev =w.prev,
and then adjusting u.prev.next and u.next.prev. (See Figure 3.3.) Thanks
to the dummy node, there is no need to worry about w.prev or w.next not
existing.

DLList
Node addBefore(Node w, T x) {
Node u = new Node();
u.x = x;
u.prev = w.prev;
u.next = w;

u.next.prev = u;
u.prev.next = u;
n++;

return u;

Now, the list operation add(i, x) is trivial to implement. We find the
ith node in the DLList and insert a new node u that contains x just before
it.

DLList

void add(int i, T x) {
addBefore(getNode(i), x);
}

69

§3.2 Linked Lists

The only non-constant part of the running time of add(i, x) is the time
it takes to find the ith node (using getNode(i)). Thus, add(i,x) runs in
O(1 + min{i,n—i}) time.

Removing a node w from a DLList is easy. We only need to adjust
pointers at w.next and w.prev so that they skip over w. Again, the use of
the dummy node eliminates the need to consider any special cases:

DLList

void remove(Node w) {
w.prev.next = w.next;
w.next.prev = w.prev;
n--;

}

Now the remove(i) operation is trivial. We find the node with index i
and remove it:

DLList

T remove(int i) {
Node w = getNode(i);
remove (w);
return w.x;

Again, the only expensive part of this operation is finding the ith node
using getNode(i), so remove(i) runs in O(1 + min{i,n - i}) time.

3.2.2 Summary

The following theorem summarizes the performance of a DLList:

Theorem 3.2. A DLList implements the List interface. In this implementa-
tion, the get(i), set(i,x), add(i, x) and remove(i) operations run in O(1 +
min{i,n - i}) time per operation.

It is worth noting that, if we ignore the cost of the getNode(i) opera-
tion, then all operations on a DLList take constant time. Thus, the only
expensive part of operations on a DLList is finding the relevant node.

70

SEList: A Space-Efficient Linked List §3.3

Once we have the relevant node, adding, removing, or accessing the data
at that node takes only constant time.

This is in sharp contrast to the array-based List implementations
of Chapter 2; in those implementations, the relevant array item can be
found in constant time. However, addition or removal requires shifting
elements in the array and, in general, takes non-constant time.

For this reason, linked list structures are well-suited to applications
where references to list nodes can be obtained through external means.
An example of this is the LinkedHashSet data structure found in the Java
Collections Framework, in which a set of items is stored in a doubly-
linked list and the nodes of the doubly-linked list are stored in a hash ta-
ble (discussed in Chapter 5). When elements are removed from a Linked-
HashSet, the hash table is used to find the relevant list node in constant
time and then the list node is deleted (also in constant time).

3.3 SEList: A Space-Efficient Linked List

One of the drawbacks of linked lists (besides the time it takes to access
elements that are deep within the list) is their space usage. Each node in
a DLList requires an additional two references to the next and previous
nodes in the list. Two of the fields in a Node are dedicated to maintaining
the list, and only one of the fields is for storing data!

An SEList (space-efficient list) reduces this wasted space using a sim-
ple idea: Rather than store individual elements in a DLList, we store a
block (array) containing several items. More precisely, an SEList is pa-
rameterized by a block size b. Each individual node in an SEList stores a
block that can hold up to b + 1 elements.

For reasons that will become clear later, it will be helpful if we can
do Deque operations on each block. The data structure that we choose for
this is a BDeque (bounded deque), derived from the ArrayDeque structure
described in Section 2.4. The BDeque differs from the ArrayDeque in one
small way: When a new BDeque is created, the size of the backing array a
is fixed at b+ 1 and never grows or shrinks. The important property of a
BDeque is that it allows for the addition or removal of elements at either
the front or back in constant time. This will be useful as elements are

71

§3.3 Linked Lists

shifted from one block to another.

SEList
class BDeque extends ArrayDeque<T> {
BDeque() {
super(SEList.this.type());
a = newArray(b+1);

}

void resize() { }

}

An SEList is then a doubly-linked list of blocks:

SEList
class Node {
BDeque d;
Node prev, next;
}
SEList
int n;
Node dummy;

3.3.1 Space Requirements

An SEList places very tight restrictions on the number of elements in a
block: Unless a block is the last block, then that block contains at least
b—1 and at most b + 1 elements. This means that, if an SEList contains n
elements, then it has at most

n/(b—1)+1 = O(n/b)

blocks. The BDeque for each block contains an array of length b + 1 but,
for every block except the last, at most a constant amount of space is
wasted in this array. The remaining memory used by a block is also con-
stant. This means that the wasted space in an SEList is only O(b + n/b).
By choosing a value of b within a constant factor of y/n, we can make
the space-overhead of an SEList approach the y/n lower bound given in
Section 2.6.2.

72

SEList: A Space-Efficient Linked List §3.3
3.3.2 Finding Elements

The first challenge we face with an SEList is finding the list item with a
given index i. Note that the location of an element consists of two parts:

1. The node u that contains the block that contains the element with

index i; and

2. the index j of the element within its block.

SEList

class Location {
Node u;
int j;
Location(Node u, int j) {
this.u = u;
this.j = j;
}
}

To find the block that contains a particular element, we proceed the
same way as we do in a DLList. We either start at the front of the list and
traverse in the forward direction, or at the back of the list and traverse
backwards until we reach the node we want. The only difference is that,
each time we move from one node to the next, we skip over a whole block

of elements.

SEList
Location getlLocation(int i) {
if (i <n/2) {
Node u = dummy.next;
while (i >= u.d.size()) {
i -= u.d.size();
u = u.next;

}

return new Location(u, i);
} else {

Node u = dummy;

int idx = n;

73

§3.3 Linked Lists

while (i < idx) {
u = u.prev;
idx -= u.d.size();
}
return new Location(u, i-idx);
}
}

Remember that, with the exception of at most one block, each block
contains at least b — 1 elements, so each step in our search gets us b — 1
elements closer to the element we are looking for. If we are searching
forward, this means that we reach the node we want after O(1 + i/b)
steps. If we search backwards, then we reach the node we want after
O(1 +(n—1)/b) steps. The algorithm takes the smaller of these two quan-
tities depending on the value of i, so the time to locate the item with
index i is O(1 + min{i,n— i}/b).

Once we know how to locate the item with index i, the get(i) and
set(i, x) operations translate into getting or setting a particular index in
the correct block:

SEList

T get(int i) {
Location 1 = getlLocation(i);
return l.u.d.get(1.j);
}
T set(int i, T x) {
Location 1 = getlLocation(i);
Ty=1.u.d.get(l.j);
l.u.d.set(1.j,x);
return y;

}

The running times of these operations are dominated by the time it
takes to locate the item, so they also run in O(1 + min{i,n—i}/b) time.

3.3.3 Adding an Element

Adding elements to an SEList is a little more complicated. Before consid-
ering the general case, we consider the easier operation, add(x), in which

74

SEList: A Space-Efficient Linked List §3.3

x is added to the end of the list. If the last block is full (or does not exist
because there are no blocks yet), then we first allocate a new block and
append it to the list of blocks. Now that we are sure that the last block
exists and is not full, we append x to the last block.

SEList

boolean add(T x) {
Node last = dummy.prev;
if (last == dummy || last.d.size() == b+1) {
last = addBefore(dummy);
}
last.d.add(x);
n++;
return true;

Things get more complicated when we add to the interior of the list
using add(i, x). We first locate i to get the node u whose block contains
the ith list item. The problem is that we want to insert x into u’s block,
but we have to be prepared for the case where u’s block already contains
b + 1 elements, so that it is full and there is no room for x.

Let ug, uq,uy,... denote u, u.next, u.next.next, and so on. We explore
Ug, Uy, Us,... looking for a node that can provide space for x. Three cases
can occur during our space exploration (see Figure 3.4):

1. We quickly (in r+1 < b steps) find a node u, whose block is not full.
In this case, we perform r shifts of an element from one block into
the next, so that the free space in u, becomes a free space in uy. We
can then insert x into ug’s block.

2. We quickly (in r+1 < b steps) run off the end of the list of blocks. In
this case, we add a new empty block to the end of the list of blocks
and proceed as in the first case.

3. After b steps we do not find any block that is not full. In this case,
Up,...,Uy_1 is a sequence of b blocks that each contain b+1 elements.
We insert a new block uy, at the end of this sequence and spread the
original b(b + 1) elements so that each block of ug,...,u, contains

75

§3.3 Linked Lists

Figure 3.4: The three cases that occur during the addition of an item x in the
interior of an SEList. (This SEList has block size b = 3.)

exactly b elements. Now ug’s block contains only b elements so it
has room for us to insert x.

SEList

void add(int i, T x) {
if (i == n) {
add(x);
return;
}
Location 1 = getlLocation(i);
Node u = 1.u;
int r = 0;
while (r < b & & u !'= dummy && u.d.size() == b+1) {
u = u.next;
r++;
}
if (r == b) { /] b blocks each with b+1 elements
spread(1l.u);
u=1.u;

76

SEList: A Space-Efficient Linked List §3.3

if (u == dummy) { // ran off the end - add new node
u = addBefore(u);
}
while (u != 1.u) { // work backwards, shifting elements

u.d.add(0, u.prev.d.remove(u.prev.d.size()-1));
u = u.prev;

u.d.add(1.j, x);
n++;

The running time of the add(i, x) operation depends on which of the
three cases above occurs. Cases 1 and 2 involve examining and shifting
elements through at most b blocks and take O(b) time. Case 3 involves
calling the spread(u) method, which moves b(b + 1) elements and takes
O(b?) time. If we ignore the cost of Case 3 (which we will account for
later with amortization) this means that the total running time to locate
i and perform the insertion of x is O(b + min{i, n—i}/b).

3.3.4 Removing an Element

Removing an element from an SEList is similar to adding an element.
We first locate the node u that contains the element with index i. Now,
we have to be prepared for the case where we cannot remove an element
from u without causing u’s block to become smaller than b — 1.

Again, let ug,uy,uy,... denote u, u.next, u.next.next, and so on. We
examine ug,uy, Uy,... in order to look for a node from which we can bor-
row an element to make the size of uy’s block at least b—1. There are three
cases to consider (see Figure 3.5):

1. We quickly (in r + 1 < b steps) find a node whose block contains
more than b — 1 elements. In this case, we perform r shifts of an
element from one block into the previous one, so that the extra ele-
ment in u, becomes an extra element in ug. We can then remove the
appropriate element from ugy’s block.

2. We quickly (in r + 1 < b steps) run off the end of the list of blocks.
In this case, u, is the last block, and there is no need for u,’s block

77

§3.3 Linked Lists

| Ffcld] |

cesfafb] | Jesjefd] [pefe]f] | |

Figure 3.5: The three cases that occur during the removal of an item x in the
interior of an SEList. (This SEList has block size b = 3.)

to contain at least b — 1 elements. Therefore, we proceed as above,
borrowing an element from u, to make an extra element in uy. If
this causes u,’s block to become empty, then we remove it.

3. After b steps, we do not find any block containing more than b -1
elements. In this case, ug,...,u,_; is a sequence of b blocks that
each contain b — 1 elements. We gather these b(b — 1) elements into
Ug,...,Uy_p so that each of these b — 1 blocks contains exactly b el-
ements and we remove u,_1, which is now empty. Now uy’s block
contains b elements and we can then remove the appropriate ele-
ment from it.

SEList

T remove(int i) {
Location 1 = getlLocation(i);
Ty=1.u.d.get(l.j);
Node u = 1.u;
int r = 0;

78

SEList: A Space-Efficient Linked List §3.3

while (r < b & & u != dummy && u.d.size() == b-1) {
u = u.next;
r++;

}

if (r == b) { // b blocks each with b-1 elements
gather(l.u);

}

u=1.u;

u.d.remove(l.j);

while (u.d.size() < b-1 && u.next != dummy) {
u.d.add(u.next.d.remove(0));
u = u.next;

}

if (u.d.isEmpty()) remove(u);
n--;

return y;

Like the add(i, x) operation, the running time of the remove(i) opera-
tion is O(b +min{i, n—i}/b) if we ignore the cost of the gather(u) method
that occurs in Case 3.

3.3.5 Amortized Analysis of Spreading and Gathering

Next, we consider the cost of the gather(u) and spread(u) methods that
may be executed by the add(i, x) and remove(i) methods. For the sake of
completeness, here they are:

SEList

void spread(Node u) {
Node w = uj;
for (int j = 0; j < b; j++) {
w = w.next;

}
w = addBefore(w);
while (w != u) {

while (w.d.size() < b)
w.d.add(0,w.prev.d.remove(w.prev.d.size()-1));
W = w.prev;

}

79

§3.3 Linked Lists

|}

SEList

void gather(Node u) {

Node w = uj;

for (int j = 0; j < b-1; j++) {
while (w.d.size() < b)

w.d.add(w.next.d.remove(0));

w = w.next;

}

remove(w) ;

}

The running time of each of these methods is dominated by the two
nested loops. Both the inner and outer loops execute at most b + 1 times,
so the total running time of each of these methods is O((b + 1)?) = O(b?).
However, the following lemma shows that these methods execute on at
most one out of every b calls to add(i, x) or remove(i).

Lemma 3.1. If an empty SEList is created and any sequence of m > 1 calls
to add(i,x) and remove(i) is performed, then the total time spent during all
calls to spread() and gather() is O(bm).

Proof. We will use the potential method of amortized analysis. We say
that a node u is fragile if u’s block does not contain b elements (so that u is
either the last node, or contains b —1 or b + 1 elements). Any node whose
block contains b elements is rugged. Define the potential of an SEList
as the number of fragile nodes it contains. We will consider only the
add(i,x) operation and its relation to the number of calls to spread(u).
The analysis of remove(i) and gather(u) is identical.

Notice that, if Case 1 occurs during the add(i, x) method, then only
one node, u, has the size of its block changed. Therefore, at most one
node, namely u,, goes from being rugged to being fragile. If Case 2 occurs,
then a new node is created, and this node is fragile, but no other node
changes size, so the number of fragile nodes increases by one. Thus, in
either Case 1 or Case 2 the potential of the SEList increases by at most
one.

80

SEList: A Space-Efficient Linked List §3.3

Finally, if Case 3 occurs, it is because uy,...,u,_1 are all fragile nodes.
Then spread(ug) is called and these b fragile nodes are replaced with b+1
rugged nodes. Finally, x is added to ug’s block, making ug fragile. In total
the potential decreases by b —1.

In summary, the potential starts at O (there are no nodes in the list).
Each time Case 1 or Case 2 occurs, the potential increases by at most 1.
Each time Case 3 occurs, the potential decreases by b — 1. The poten-
tial (which counts the number of fragile nodes) is never less than 0. We
conclude that, for every occurrence of Case 3, there are at least b—1 oc-
currences of Case 1 or Case 2. Thus, for every call to spread(u) there are
at least b calls to add(i, x). This completes the proof. O

3.3.6 Summary

The following theorem summarizes the performance of the SEList data
structure:

Theorem 3.3. An SEList implements the List interface. Ignoring the cost
of calls to spread(u) and gather(u), an SEList with block size b supports the
operations

* get(i)and set(i,x)in O(1 + min{i,n—i}/b) time per operation; and
* add(i,x) and remove(i)in O(b+min{i,n— i}/b) time per operation.

Furthermore, beginning with an empty SEList, any sequence of m add(i,x)
and remove(i) operations results in a total of O(bm) time spent during all
calls to spread(u) and gather(u).

The space (measured in words)! used by an SEList that stores n elements
is n+ O(b + n/b).

The SEList is a trade-off between an ArraylList and a DLList where
the relative mix of these two structures depends on the block size b. At
the extreme b = 2, each SEList node stores at most three values, which
is not much different than a DLList. At the other extreme, b > n, all
the elements are stored in a single array, just like in an Arraylist. In
between these two extremes lies a trade-off between the time it takes to

IRecall Section 1.4 for a discussion of how memory is measured.

81

§3.4 Linked Lists

add or remove a list item and the time it takes to locate a particular list
item.

3.4 Discussion and Exercises

Both singly-linked and doubly-linked lists are established techniques,
having been used in programs for over 40 years. They are discussed,
for example, by Knuth [46, Sections 2.2.3-2.2.5]. Even the SEList data
structure seems to be a well-known data structures exercise. The SEList
is sometimes referred to as an unrolled linked list [69].

Another way to save space in a doubly-linked list is to use so-called
XOR-lists. In an XOR-list, each node, u, contains only one pointer, called
u.nextprev, that holds the bitwise exclusive-or of u.prev and u.next. The
list itself needs to store two pointers, one to the dummy node and one to
dummy.next (the first node, or dummy if the list is empty). This technique
uses the fact that, if we have pointers to u and u.prev, then we can extract
u.next using the formula

u.next = u.prev-u.nextprev .

(Here = computes the bitwise exclusive-or of its two arguments.) This
technique complicates the code a little and is not possible in some lan-
guages that have garbage collection—including Java—but gives a doubly-
linked list implementation that requires only one pointer per node. See
Sinha’s magazine article [70] for a detailed discussion of XOR-lists.

Exercise 3.1. Why is it not possible to use a dummy node in an SLList
to avoid all the special cases that occur in the operations push(x), pop(),
add(x), and remove()?

Exercise 3.2. Design and implement an SLList method, secondlLast(),
that returns the second-last element of an SLList. Do this without using
the member variable, n, that keeps track of the size of the list.

Exercise 3.3. Implement the List operations get(i), set(i,x), add(i, x)
and remove(i)onan SLList. Each of these operations should run in O(1+
i) time.

82

Discussion and Exercises §3.4

Exercise 3.4. Design and implement an SLList method, reverse() that
reverses the order of elements in an SLList. This method should run in
O(n) time, should not use recursion, should not use any secondary data
structures, and should not create any new nodes.

Exercise 3.5. Design and implement SLList and DLList methods called
checkSize(). These methods walk through the list and count the number
of nodes to see if this matches the value, n, stored in the list. These meth-
ods return nothing, but throw an exception if the size they compute does
not match the value of n.

Exercise 3.6. Try to recreate the code for the addBefore(w) operation that
creates a node, u, and adds it in a DLList just before the node w. Do not
refer to this chapter. Even if your code does not exactly match the code
given in this book it may still be correct. Test it and see if it works.

The next few exercises involve performing manipulations on DLLists.
You should complete them without allocating any new nodes or tempo-
rary arrays. They can all be done only by changing the prev and next
values of existing nodes.

Exercise 3.7. Write a DLList method isPalindrome() that returns true
if the list is a palindrome, i.e., the element at position i is equal to the
element at position n—i—1 for all i € {0,...,n—1}. Your code should run
in O(n) time.

Exercise 3.8. Implement a method rotate(r) that “rotates” a DLList so
that list item i becomes list item (i + r) mod n. This method should run
in O(1 + min{r, n - r}) time and should not modify any nodes in the list.

Exercise 3.9. Write a method, truncate(i), that truncates a DLList at
position i. After executing this method, the size of the list will be i and
it should contain only the elements at indices 0,...,i—1. The return value
is another DLList that contains the elements at indices i,...,n—1. This
method should run in O(min{i,n— i}) time.

Exercise 3.10. Write a DLList method, absorb(12), that takes as an ar-
gument a DLList, 12, empties it and appends its contents, in order, to
the receiver. For example, if 11 contains a,b,c and 12 contains d,e, f,

83

§3.4 Linked Lists

then after calling 11.absorb(12), 11 will contain a,b,c,d,e, f and 12 will
be empty.

Exercise 3.11. Write a method deal() that removes all the elements with
odd-numbered indices from a DLList and return a DLList containing
these elements. For example, if 11, contains the elements a,b,c,d,e, f,

then after calling 11.deal(), 11 should contain g4,c,e and a list containing
b,d, f should be returned.

Exercise 3.12. Write a method, reverse(), that reverses the order of ele-
mentsinaDLList.

Exercise 3.13. This exercise walks you through an implementation of the
merge-sort algorithm for sorting a DLList, as discussed in Section 11.1.1.
In your implementation, perform comparisons between elements using
the compareTo(x) method so that the resulting implementation can sort
any DLList containing elements that implement the Comparable inter-
face.

1. Write a DLList method called takeFirst(12). This method takes
the first node from 12 and appends it to the the receiving list. This
is equivalent to add(size(), 12.remove(0)), except that it should not
create a new node.

2. Write a DLList static method, merge(11,12), that takes two sorted
lists 11 and 12, merges them, and returns a new sorted list contain-
ing the result. This causes 11 and 12 to be emptied in the proces.
For example, if 11 contains a,¢,d and 12 contains b,e, f, then this
method returns a new list containing a,b,¢,d,e, f.

3. Write a DLList method sort() that sorts the elements contained in
the list using the merge sort algorithm. This recursive algorithm
works in the following way:

(a) If the list contains 0 or 1 elements then there is nothing to do.
Otherwise,

(b) Using the truncate(size()/2) method, split the list into two
lists of approximately equal length, 11 and 12;

(c) Recursively sort 11;

84

Discussion and Exercises §3.4

(d) Recursively sort 12; and, finally,
(e) Merge 11 and 12 into a single sorted list.

The next few exercises are more advanced and require a clear under-
standing of what happens to the minimum value stored in a Stack or
Queue as items are added and removed.

Exercise 3.14. Design and implement a MinStack data structure that can
store comparable elements and supports the stack operations push(x),
pop(), and size(), as well as the min() operation, which returns the mini-
mum value currently stored in the data structure. All operations should
run in constant time.

Exercise 3.15. Design and implement a MinQueue data structure that can
store comparable elements and supports the queue operations add(x),
remove(), and size(), as well as the min() operation, which returns the
minimum value currently stored in the data structure. All operations
should run in constant amortized time.

Exercise 3.16. Design and implement a MinDeque data structure that
can store comparable elements and supports all the deque operations
addFirst(x), addLast(x) removeFirst(), removelLast() and size(), and
the min() operation, which returns the minimum value currently stored
in the data structure. All operations should run in constant amortized
time.

The next exercises are designed to test the reader’s understanding of
the implementation and analysis of the space-efficient SEList:

Exercise 3.17. Prove that, if an SEList is used like a Stack (so that the
only modifications to the SEList are done using push(x) = add(size(), x)
and pop() = remove(size()— 1)), then these operations run in constant
amortized time, independent of the value of b.

Exercise 3.18. Design and implement of a version of an SEList that sup-
ports all the Deque operations in constant amortized time per operation,
independent of the value of b.

Exercise 3.19. Explain how to use the bitwise exclusive-or operator, ~, to
swap the values of two int variables without using a third variable.

85

